Pricing Mechanism

The price formula is:

price(t)=1rateScalar(t)×ln(p(t)1p(t))+rateAnchor(t)\text{price}(t) = \frac{1}{\text{rateScalar}(t)} \times \ln\left(\frac{p(t)}{1 - p(t)}\right) + \text{rateAnchor}(t)

  • Normalized time ( t ) ranges from 0 (maturity) to 1.

  • rateScalar: rateScalar(t)=ScalarRoott\text{rateScalar}(t) = \frac{\text{ScalarRoot}}{t}

  • rateAnchor adjusts dynamically to maintain capital efficiency.

Example:

Given(rateScalar=100)( \text{rateScalar} =100), (rateAnchor=1.1)( \text{rateAnchor} = 1.1 ), initial PT proportion (pbefore=0.6)( p_{\text{before}} = 0.6 )

pricebefore=1100×ln(0.60.4)+1.1=1.104055\text{price}_{\text{before}} = \frac{1}{100} \times \ln\left(\frac{0.6}{0.4}\right) + 1.1 = 1.104055

After swapping 100 BT for PT, assuming pafter=0.55p_{\text{after}} = 0.55

priceafter=1100×ln(0.550.45)+1.1=1.102007\text{price}_{\text{after}} = \frac{1}{100} \times \ln\left(\frac{0.55}{0.45}\right) + 1.1 = 1.102007
dPT=100×1.104055+1.1020072=110.202785dPT = 100 \times \frac{1.104055 + 1.102007}{2} = 110.202785

Last updated